
MaestroNG Documentation
Release 0.7.5

Maxime Petazzoni

Oct 23, 2020

Table of contents

1 Introduction 1

2 User Guide 3
2.1 Usage . 3
2.2 Environment description . 5
2.3 How Maestro orchestrates and service auto-configuration . 10
2.4 Defining dependencies . 11
2.5 Port mapping . 12
2.6 Volume bindings . 14
2.7 Lifecycle checks . 14
2.8 Restart policy . 16
2.9 Links . 17
2.10 Working with image registries . 17
2.11 Passing extra environment variables . 18
2.12 Maestro guest functions . 19

i

ii

CHAPTER 1

Introduction

MaestroNG is an orchestrator of Docker-based, multi-hosts environments. Working from a description of your en-
vironment, MaestroNG offers service-level and container-level controls that rely on Maestro’s understanding of your
declared service dependencies, and placement of your containers in your fleet of hosts.

Maestro aims at being simple to use whether you are controlling a few containers in a local virtual machine, or
hundreds of containers spread across as many hosts.

The orchestration features of Maestro obviously rely on the collaboration of the Docker containers that you are con-
trolling with Maestro. Maestro basically takes care of two things:

1. Controlling the start (and stop) order of services during environment bring up and tear down according to the
defined dependencies between services.

2. Passing extra environment variables to each container to pass all the information it may need to operate in that
environment, in particular information about its dependencies.

The most common way to integrate your application with Maestro is to make your container’s entrypoint a simple
Python init script that acts as the glue between Maestro, the information that it passes through the container’s envi-
ronment, and your application. To make this easier to write and put together, Maestro provides a set of Maestro guest
functions that know how to grok this environment information.

1

MaestroNG Documentation, Release 0.7.5

2 Chapter 1. Introduction

CHAPTER 2

User Guide

This part of the documentation focuses on step-by-step instructions for getting the most out of MaestroNG.

2.1 Usage

Once installed, Maestro is available both as a library through the maestro package and as an executable. To run
Maestro, simply execute maestro. Note that if you didn’t install Maestro system-wide, you can still run it with the
same commands as long as your PYTHONPATH contains the path to your maestro-ng repository clone and using
python -m maestro

$ maestro -h
usage: maestro [-h] [-f FILE] [-v]

{status,pull,start,stop,restart,logs,deptree} ...

Maestro, Docker container orchestrator.

positional arguments:
{status,pull,start,stop,restart,logs,deptree}
status display container status
pull pull images from repository
start start services and containers
stop stop services and containers
kill kill services and containers
restart restart services and containers
logs show logs from a container
deptree show the dependency tree
complete shell auto-completion helper

optional arguments:
-h, --help show this help message and exit
-f FILE, --file FILE read environment description from FILE (use - for

stdin, defaults to ./maestro.yaml)
-v, --version show program version and exit

3

MaestroNG Documentation, Release 0.7.5

You can then get help on each individual command with:

$ maestro start -h
usage: maestro start [-h] [-c LIMIT] [-d] [-i] [-r] [thing [thing ...]]

Start services and containers

positional arguments:
thing container(s) or service(s) to display

optional arguments:
-h, --help show this help message and exit
-c LIMIT, --concurrency LIMIT

limit how many containers can be acted on at the same
time to LIMIT

-d, --with-dependencies
include dependencies

-i, --ignore-dependencies
ignore dependency order

-r, --refresh-images force refresh of container images from registry

By default, Maestro will read the environment description configuration from the maestro.yaml file in the current
directory. You can override this with the -f flag to specify the path to the environment configuration file. Additionally,
you can use - to read the configuration from stdin. The following commands are identical:

$ maestro status
$ maestro -f maestro.yaml status
$ maestro -f - status < maestro.yaml

The first positional argument is a command you want Maestro to execute. The available commands are status,
start, stop, restart, logs and deptree. They should all be self-explanatory.

Most commands operate on one or more “things”, which can be services or instances, by name. When passing service
names, Maestro will automatically expand those to their corresponding list of instances. The logs command is the
only one that operates on strictly one container instance.

2.1.1 Impact of defined dependencies on orchestration order

One of the main features of Maestro is its understand of dependencies between services. When Maestro carries out
an orchestration action, dependencies are always considered unless the -i | --ignore-dependencies flag is
passed.

But Maestro will only respect the dependencies to other services and containers that the current orchestration
action includes. If you want Maestro to automatically include the dependencies of the services or containers you want
to act on in the orchestration that will be carried out, you must pass the -d | --with-dependencies flag!

For example, assuming we have two services, ZooKeeper (zookeeper) and Kafka (kafka), and that Kafka depends
on ZooKeeper:

Starts Kafka and only Kafka:
$ maestro start kafka

Starts ZooKeeper, then Kafka:
$ maestro start -d kafka
Which is equivalent to:
$ maestro start kafka zookeeper

(continues on next page)

4 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

(continued from previous page)

Starts ZooKeeper and Kafka at the same time (includes dependencies but
ignores dependency order constraints):
$ maestro start -d -i kafka

2.2 Environment description

The environment is described using YAML. The description of the environment follows a specific, versioned schema.
The default schema version, if not specified, is version 1. The most recent version of the schema, described by this
documentation, is version 2. To declare what schema version to use for your YAML environment description file, use
the following header:

__maestro:
schema: 2

2.2.1 Structure

The environment is named, and composed of three main mandatory sections: registries, ships, and services.

1. The registries section defines authentication credentials that Maestro can use to pull Docker images for your
services. If you only pull public images, this section may remain empty.

2. The ships section describes hosts that will run the Docker containers.

3. The services section defines which services make up the environment, the dependencies between them, and
instances of your services that you want to run.

Here’s the outline:

__maestro:
schema: 2

name: demo
registries:

Auth credentials for each registry that needs them (see below)
ship_defaults:
defaults for some of the ship attributes (see below)

ships:
Ship definitions (see below)

services:
Service definitions (see below)

2.2.2 Metadata

The __maestro section contains information that helps Maestro understand your environment description. In par-
ticular, the schema version specifies what version of the YAML “schema” Maestro should use when parsing the
environment description. This provides an easier upgrade path when Maestro introduces backwards incompatible
changes.

2.2. Environment description 5

MaestroNG Documentation, Release 0.7.5

2.2.3 Registries

The registries section defines the Docker registries that Maestro can pull images from and the authentication credentials
needed to access them (see Working with image registries). For each registry, you must provide the full registry URL,
a username, a password, and possibly email. For example:

registries:
my-private-registry:
registry: https://my-private-registry/v1/
username: maestro
password: secret
email: maestro-robot@domain.com

2.2.4 Ship defaults

The ship defaults sections specify certain ship attribute defaults, like timeout, docker_port, api_version or
ssh_timeout.

ship_defaults:
timeout: 60

2.2.5 Ships

A ship is a host that runs your Docker containers. They have names (which don’t need to match their DNS resolvable
host name) and IP addressses/hostnames (ip). They may also define:

• api_version: The API version of the Docker daemon. If you set it to auto, the version is automatically
retrieved from the Docker daemon and the latest available version is used.

• docker_port: A custom port, used if the Docker daemon doesn’t listen on the default port of 2375.

• endpoint: The Docker daemon endpoint address. Override this if the address of the machine is not the one
you want to use to interact with the Docker daemon running there (for example via a private network). Defaults
to the ship’s ip parameter.

• ssh_tunnel: An SSH tunnel to secure the communication with the target Docker daemon (especially if
you don’t want the Docker daemon to listen on anything else than localhost, and rely on SSH key-based
authentication instead). Here again, if the endpoint parameter is specified, it will be used as the target host
for the SSH connection.

• socket_path: If the Docker daemon is listening on a unix domain socket in the local filesystem, you can
specify socket_path to connect to it directly. This is useful when the Docker daemon is running locally.

ships:
vm1.ore1: {ip: c414.ore1.domain.com}
vm2.ore2: {ip: c415.ore2.domain.com, docker_port: 4243}
vm3.ore3:
ip: c416.ore3.domain.com
endpoint: c416.corp.domain.com
docker_port: 4243
ssh_tunnel:

user: ops
key: {{ env.HOME }}/.ssh/id_dsa
port: 22 # That's the default

6 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

You can also connect to a Docker daemon secured by TLS. Note that if you want to use verification, you have to give
the IP (or something that is resolvable inside the container) as IP, and the name in the server certificate as endpoint.

Not using verification works too (just don’t mention tls_verify and tls_ca_cert), but a warning from inside
urllib3 will make Maestro’s output unreadable.

In the example below, “docker1” is the CN in the server certificate. All certificates and keys have been created as
explained in https://docs.docker.com/articles/https/

ships:
docker1:

ip: 172.17.42.1
endpoint: docker1
tls: true
tls_verify: true
tls_ca_cert: ca.pem
tls_key: key.pem
tls_cert: cert.pem

2.2.6 Services

Services have a name (used for commands that act on specific services instead of the whole environment and in depen-
dency declarations), a Docker image (image), and a description of each instance of that service (under instances).
Services may also define:

• envfile: Filename, or list of filenames, of Docker environment files that will apply to all of that service’s
instances. File names are relative to the Maestro environment YAML file’s location;

• env: Environment variables that will apply to all of that service’s instances. env values take precedence over
the contents of ‘‘envfile‘‘s;

• omit: If true, excludes the service from non-specific actions (when Maestro is executed without a list of
services or containers as arguments);

• requires and wants_info: Define hard and soft dependencies (see Defining dependencies);

• lifecycle: Service instances’ lifecycle state checks, which Maestro uses to confirm a service instance cor-
rectly started or stopped (see Lifecycle checks);

• limits: Set container limits at service scope. All service instances would inherit these limits;

• ports: Set container ports at service scope. All service instances would inherit these ports;

Here’s an example of a simple service with a single instance:

services:
hello:
image: ubuntu
limits:

memory: 10m
cpu: 1

ports:
server: 4848

envfile:
- hello-base.env
- hello-extras.env

instances:
hello1:

ports:
(continues on next page)

2.2. Environment description 7

https://docs.docker.com/articles/https/

MaestroNG Documentation, Release 0.7.5

(continued from previous page)

client: 4242
command: "while true ; do echo 'Hello, world!' | nc -l 0.0.0.0 4242 ; done"

2.2.7 Service instances

Each instance must, at minimum, define the ship its container will be placed on (by name). Additionally, each instance
may define:

• image, to override the service-level image repository name, if needed (useful for canary deployments for
example);

• ports, a dictionary of port mappings, as a map of <port name>: <port or port mapping
spec> (see Port mapping for port spec syntax);

• lifecycle, for lifecycle state checks, which Maestro uses to confirm a service correctly started or stopped
(see Lifecycle checks);

• volumes, for container volume mappings, as a map of <source from host>: <destination
in container>. Each target can also be specified as a map {target: <destination>, mode:
<mode>}. mode defaults to rw for read-write, but can be any combination of comma-separated mode flags,
like ro,Z or z,rw;

• container_volumes, a path, or list of paths inside the container to be used as container-only volumes with
no host bind-mount. This is mostly used for data-containers;

• volumes_from, a container or list of containers running on the same _ship_ to get volumes from. This is
useful to get the volumes of a data-container into an application container;

• envfile: Filename, or list of filenames, of Docker environment files for this container. File names are relative
to the Maestro environment YAML file’s location;

• env, for environment variables, as a map of <variable name>: <value> (variables defined at the
instance level override variables defined at the service level). env values take precedence over ‘‘envfiles‘‘s;

• privileged, a boolean specifying whether the container should run in privileged mode or not (defaults to
false);

• cap_add, Linux capabilities to add to the container (see the documentation for docker run;

• cap_drop, Linux capabilities to drop from the container;

• extra_hosts, a map of custom hostnames to IP addresses that will be added to the /etc/hosts for the
container. Example: <hostname>: <ip address>. You can also define extra hosts by reference to other
ships defined in the Maestro environment with: <hostname>: {ship: <ship-name>}. Note that the
ship must be defined with an IP address (as opposed to a FQDN) for this to work in the containers’ host file;

• stop_timeout, the number of seconds Docker will wait between sending SIGTERM and SIGKILL (defaults
to 10);

• limits:

– memory, the memory limit of the container (in bytes, or with one of the k, m or g suffixes, also valid in
uppercase);

– cpu, the number of CPU shares (relative weight) allocated to the container;

– swap, the swap limit of the container (in bytes, or with one of the k, m or g suffixes, also valid in
uppercase);

• log_driver, one of the supported log drivers, e.g. syslog or json-file;

8 Chapter 2. User Guide

https://docs.docker.com/reference/run/#runtime-privilege-linux-capabilities-and-lxc-configuration

MaestroNG Documentation, Release 0.7.5

• log_opt, a set of key value pairs that provide additional logging parameters. E.g. the syslog-address to
redirect syslog output to another address;

• command, to specify or override the command executed by the container;

• net, to specify the container’s network mode (one of bridge – the default, host,
container:<name|id> or none to disable networking altogether);

• restart, to specify the restart policy (see Restart policy);

• dns, to specify one (as a single IP address) or more DNS servers (as a list) to be declared inside the container;

• security_opt, to specify additional security options to customize container labels, apparmor profiles, etc.

• ulimits, to override the default ulimits for a container. You can either specify a single limit as an integer or
soft/hard limits as a mapping.

• username, to set the name of the user under which the container’s processes will run.

• labels, a list or a map (dictionary) of labels to set on the container.

For example:

services:
zookeeper:
image: zookeeper:3.4.5
instances:

zk-1:
ship: vm1.ore1
ports: {client: 2181, peer: 2888, leader_election: 3888}
privileged: true
volumes:
/data/zookeeper: /var/lib/zookeeper

limits:
memory: 1g
cpu: 2

labels:
- no-relocate

zk-2:
ship: vm2.ore1
ports: {client: 2181, peer: 2888, leader_election: 3888}
lifecycle:
running: [{type: tcp, port: client}]

volumes:
/data/zookeeper: /var/lib/zookeeper

limits:
memory: 1g
cpu: 2

labels:
- no-relocate

lifecycle:
running: [{type: tcp, port: client}]

kafka:
image: kafka:latest
requires: [zookeeper]
envfile: kafka.env
instances:

kafka-broker:
ship: vm2.ore1
ports: {broker: 9092}
volumes:

(continues on next page)

2.2. Environment description 9

MaestroNG Documentation, Release 0.7.5

(continued from previous page)

/data/kafka: /var/lib/kafka
/etc/locatime:
target: /etc/localtime
mode: ro

env:
BROKER_ID: 0

stop_timeout: 2
limits:
memory: 5G
swap: 200m
cpu: 10

dns: [8.8.8.8, 8.8.4.4]
net: host
restart:
name: on-failure
maximum_retry_count: 3

ulimits:
nproc: 65535
nofile:

soft: 1024
hard: 1024

lifecycle:
running: [{type: tcp, port: broker}]

2.3 How Maestro orchestrates and service auto-configuration

The orchestration performed by Maestro is two-fold. The first part is providing a way for each container to learn about
the environment they evolve into, to discover about their peers and/or the container instances of other services in their
environment. The second part is by controlling the start/stop sequence of services and their containers, taking service
dependencies into account.

With inspiration from Docker’s _links_ feature, Maestro utilizes environment variables to pass information down to
each container. Each container is guaranteed to get the following environment variables:

• MAESTRO_ENVIRONMENT_NAME: the name of the Maestro environment (as defined by the top-level name
property on the environment).

• DOCKER_IMAGE: the full name of the image this container is started from.

• DOCKER_TAG: the tag of the image this container is started from.

• SERVICE_NAME: the friendly name of the service the container is an instance of. Note that it is possible to
have multiple clusters of the same kind of application by giving them distinct friendly names.

• CONTAINER_NAME: the friendly name of the instance, which is also used as the name of the container itself.
This will also be the visible hostname from inside the container.

• CONTAINER_HOST_ADDRESS: the external IP address of the host of the container. This can be used as the
“advertised” address when services use dynamic service discovery techniques.

Then, for each container of each service that the container depends on (see Defining dependencies), a set of environ-
ment variables is added:

• <SERVICE_NAME>_<CONTAINER_NAME>_HOST: the external IP address of the host of the container, which
is the address the application inside the container can be reached with accross the network.

10 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

• For each port declared by the dependent container, a <SERVICE_NAME>_<CONTAINER_NAME>_<PORT_NAME>_PORT
environment variable, containing the external, addressable port number, is provided.

Each container of a service also gets these two variables for each instance of that service so it knows about its peers.
It also gets the following variable for each port defined:

• <SERVICE_NAME>_<CONTAINER_NAME>_<PORT_NAME>_INTERNAL_PORT, containing the exposed
(internal) port number that is, most likely, only reachable from inside the container and usually the port the
application running in the container wants to bind to.

With all this information available in the container’s environment, each container can then easily know about its
surroundings and the other services it might need to talk to. It then becomes really easy to bridge the gap between
the information Maestro provides to the container via its environment and the application you want to run inside the
container.

You could, of course, have your application directly read the environment variables pushed in by Maestro. But that
would tie your application logic to Maestro, a specific orchestration system; you do not want that. Instead, you can
write a startup script that will inspect the environment and generate a configuration file for your application (or pass
in command-line flags).

To make this easier, Maestro provides a set of helper functions available in its maestro.guestutils module.
The recommended (or easiest) way to build this startup script is to write it in Python, and have the Maestro package
installed in your container.

2.4 Defining dependencies

Services can depend on each other (circular dependencies are not supported though). This dependency tree instructs
Maestro to start and stop the services in an order that will respect these dependencies. Dependent services are started
before services that depend on them, and conversly leaves of the dependency tree are stopped before the services they
depend on so that at no point in time a service may run without its dependencies – unless this was forced by the user
with the -o flag of course.

You can define dependencies by listing the names of dependent service in requires:

services:
mysql:
image: mysql
instances:

mysql-server-1: { ... }

web:
image: nginx
requires: [mysql]
instances:

www-1: { ... }

Defining a dependency also makes Maestro inject environment variables into the instances of these services that
describe where the instances of the services it depends on can be found (similarly to Docker links). See How Maestro
orchestrates and service auto-configuration for all the details on these environment variables.

You can also define “soft” dependencies that do not impact the start/stop orders but that still make Maestro inject these
variables. This can be useful if you know your application gracefully handles its dependencies not being present at
start time, through reconnects and retries for examples. Defining soft dependencies is done via the wants_info
entry:

2.4. Defining dependencies 11

MaestroNG Documentation, Release 0.7.5

services:
mysql:
image: mysql
instances:

mysql-server-1: { ... }

web:
image: nginx
wants_info: [mysql]
instances:

www-1: { ... }

2.5 Port mapping

Maestro supports several syntaxes for specifying port mappings. Unless the syntax supports and/or specifies otherwise,
Maestro will make the following assumptions:

• the exposed and external ports are the same (exposed means the port bound to inside the container, external
means the port mapped by Docker on the host to the port inside the container);

• the protocol is TCP (/tcp);

• the external port is bound on all host interfaces using the 0.0.0.0 address.

The simplest form is a single numeric value, which maps the given TCP port from the container to all interfaces of the
host on that same port:

25/tcp -> 0.0.0.0:25/tcp
ports: {smtp: 25}

If you want UDP, you can specify so:

53/udp -> 0.0.0.0:53/udp
ports: {dns: 53/udp}

If you want a different external port, you can specify a mapping by separating the two port numbers by a colon:

25/tcp -> 0.0.0.0:2525/tcp
ports: {smtp: "25:2525"}

Similarly, specifying the protocol (they should match!):

53/udp -> 0.0.0.0:5353/udp
ports: {dns: "53/udp:5353/udp"}

You can also use the dictionary form for any of these:

ports:
25/tcp -> 0.0.0.0:25/tcp
smtp:
exposed: 25
external: 25

53/udp -> 0.0.0.0:5353/udp
dns:

(continues on next page)

12 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

(continued from previous page)

exposed: 53/udp
external: 5353/udp

If you need to bind to a specific interface or IP address on the host, you need to use the dictionary form:

25/tcp -> 192.168.10.2:25/tcp
ports:

smtp:
exposed: 25
external: [192.168.10.2, 25]

53/udp -> 192.168.10.2:5353/udp
dns:
exposed: 53/udp
external: [192.168.10.2, 5353/udp]

Port ranges can be specified using the usual syntax. It’s also possible to expose a container’s port as a random port
within a given host port range:

ports:
direct: 1234-1236:1234-1236
random: 1234:1234-1236

Note that YAML supports references, which means you don’t have to repeat your ship’s IP address if you do something
like this:

ship:
demo: {ip: &demoip 192.168.10.2, docker_port: 4243}

services:
...
ports:

smtp:
exposed: 25/tcp
external: [*demoip, 25/tcp]

2.5.1 Port mappings and named ports

When services depend on each other, they most likely need to communicate. If service B depends on service A, service
B needs to be configured with information on how to reach service A (its host and port).

Even though Docker can provide inter-container networking, in a multi-host environment this is not possible. Maestro
also needs to keep in mind that not all hosting and cloud providers provide advanced networking features like multicast
or bridged frames. This is why Maestro makes the choice of always using the host’s external IP address and relies on
traditional layer 3 communication between containers.

There is no performance hit from this, even when two containers on the same host communicate, and it enables inter-
host communication in a more generic way regardless of where the two containers are located. Of course, it is up to
you to make sure that the hosts in your environment can communicate with each other.

Note that even though Maestro allows for fully customizable port mappings from the container to the host, it is
usually recommended to use the same port number inside and outside the container. It makes it slightly easier for
troubleshooting, and some services (Cassandra is one example) assume that all their nodes use the same port(s), so the
port they know about inside the container may need to be the external port they use to connect to one of their peers.

2.5. Port mapping 13

MaestroNG Documentation, Release 0.7.5

One of the downsides of this approach is that if you run multiple instances of the same service on the same host, you
need to manually make sure they don’t use the same ports, through their configuration, when that’s possible.

Finally, Maestro uses named ports, where each port your configure for each service instance is named. This name
is the name used by the instance container to find out how it should be configured and on which port(s) it needs to
listen, but it’s also the name used for each port exposed through environment variables to other containers. This way,
a dependent service can know the address of a remote service, and the specific port number of a desired endpoint. For
example, service depending on ZooKeeper would be looking for its client port.

2.6 Volume bindings

Volume bindings are specified in a way similar to docker-py and Docker’s expected format, and the mode (read-
only ‘ro’, or read-write ‘rw’) can be specified for each binding if needed. Volume bindings default to being read-write.

volumes:
This will be a read-write binding
/on/the/host: /inside/the/container

This will be a read-only binding
/also/on/the/host/:
target: /inside/the/container/too
mode: ro

Note that it is currently not possible to bind-mount the same host location into two distinct places inside the container
as this is not supported by docker-py (it’s a dictionary keyed on the host location).

Container-only volumes can be specified with the container_volumes setting on each instance, as a path or list
of paths:

container_volumes:

• /inside/the/container/1

• /inside/the/container/2

Finally, you can get the volumes of one or more containers into a container with the volumes_from feature of
Docker, as long as the containers run on the same ship:

other1 and other2 run on the same ship as this container
volumes_from: [other1, other2]

2.7 Lifecycle checks

When controlling containers (your service instances), Maestro can perform additional checks to confirm that the
service reached the desired lifecycle state, in addition to looking at the state of the container itself. A common use-
case of this is to check for a given service port to become available to confirm that the application correctly started and
is accepting connections.

Maestro can also execute checks before starting or stopping containers, to confirm that the requested start or stop
action should indeed take place.

When starting containers, Maestro will first execute the pre-start lifecycle checks before starting the container. It
will then execute all the lifecycle checks for the running target state; all must pass for the instance to be considered
correctly up and running.

14 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

Similarly, before stopping a container, Maestro will first execute the pre-stop lifecycle checks. After stopping the
container, Maestro will execute all the stopped target state checks.

Checks can be defined via the lifecycle dictionary at the service level, or for each declared instance of a service. If
both are present, all defined checks are executed; container-level lifecycle checks don’t override service-level checks,
they add to them.

services:
zookeeper:
image: zookeeper:3.4.5
lifecycle:

running:
- {type: tcp, port: client, max_wait: 10}

instances:
zk1:

ship: host1
ports: {client: 2181}
lifecycle:
running:
- {type: exec, cmd: "python ./ruok.py", attempts: 10}

In the example above, Maestro will first perform a TCP port ping on the client port; when that succeeds, it will
execute the hypothetical ruok.py script, which we can image as sending the ruok command to the ZooKeeper
instance, expecting the imok response back to declare the service healthy and operational.

2.7.1 TCP port pinging

TCP port pinging (type: tcp) makes Maestro attempt to connect to the configured port (by name), once per
second until it succeeds or the max_wait value is reached (defaults to 300 seconds).

Assuming your instance declares a client named port, you can make Maestro wait up to 10 seconds for this port to
become available by doing the following:

type: tcp
port: client
max_wait: 10

2.7.2 HTTP request

This check (type: http) makes Maestro execute web requests to a target, once per second until it succeeds or the
max_wait value is reached (defaults to 300 seconds).

Assuming your instance declares a admin named port that runs a webserver, you can make Maestro wait up to 10
seconds for an HTTP request to this port for the default path “/” to succeed by doing the following:

type: http
port: web
max_wait: 10

Options:

• port, named port for an instance or explicit numbered port

• host, IP or resolvable hostname (defaults to ship.ip)

• match_regex, regular expression to test response against (defaults to checking for HTTP 200 response
code)

2.7. Lifecycle checks 15

MaestroNG Documentation, Release 0.7.5

• path, path (including querystring) to use for request (defaults to /)

• scheme, request scheme (defaults to http)

• method, HTTP method (defaults to GET)

• max_wait, max number of seconds to wait for a successful response (defaults to 300)

• requests_options, additional dictionary of options passed directly to python’s requests.request()
method (e.g. verify=False to disable certificate validation)

2.7.3 Script execution

Script execution (type: exec) makes Maestro execute the given command, using the return code to denote the
success or failure of the test (a return code of zero indicates success, as per the Unix convention). The command
is executed a certain number of attempts (defaulting to 180), with a delay between each attempt of 1 second. For
example:

type: exec
command: "python my_cool_script.py"
attempts: 30

The command’s execution environment is extended with the same environment that your running container would
have, which means it contains all the environment information about the container’s configuration, ports, dependencies,
etc. You can then use Maestro guest utility functions to easily grok that information from the environment (in Python).
See How Maestro orchestrates and service auto-configuration and Maestro guest functions for more information.

Note that the current working directory is never changed by Maestro directly; paths to your scripts will be resolved
from wherever you run Maestro, not from where the environment YAML file lives.

2.7.4 Remote script execution

Remote script execution (type: rexec) makes Maestro execute the given script inside of running container, using
the script output to denote the success or failure of the test. Same as Script execution, the script is executed a certain
number of attempts (defaulting to 180), with a delay between each attempt of 1 second. For example:

type: rexec
command: "python my_cool_remote_script_in_container.py"
attempts: 30

Also, the script’s execution environment is extended with the same environment that running container would have,
which means it contains all the environment information about the container’s configuration, ports, dependencies, etc.
You can then use Maestro guest utility functions to easily grok that information from the environment (in Python). See
How Maestro orchestrates and service auto-configuration and Maestro guest functions for more information.

Note that minimal api_version is ‘1.16’. See Environment description for more information.

2.8 Restart policy

Since version 1.2 docker allows to define the restart policy of a container when it stops. The available policies are:

• restart: no, the default. The container is not restarted;

• restart: always: the container is _always_ restarted, regardless of its exit code;

• restart: on-failure: the container is restarted if it exits with a non-zero exit code.

16 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

You can also specify the number of maximum retries for restarting the container before giving up:

restart:
name: on-failure
retries: 3

Or as a single string (similar to Docker’s command line option):

restart: "on-failure:3"

2.9 Links

Maestro also supports defining links to link same-host containers together via Docker’s Links feature. Read more
about Docker Links to learn more. Note that the format of the environment variables is not the same as the ones
Maestro inserts into the container’s environment, so software running inside the containers needs to deal with that on
its own.

Defining links is done through the instance-level links section, with each link defined as a child in the format name:
alias:

services:
myservice:
image: ...
instances:

myservice-1:
...
links:
mongodb01: db

2.10 Working with image registries

When Maestro needs to start a new container, it will do whatever it can to make sure the image this container needs is
available; the image full name is specified at the service level.

Maestro will first check if the target Docker daemon reports the image to be available. If the image is not available, or
if the -r flag was passed on the command-line (to force refresh the images), Maestro will attempt to pull the image.

To do so, it will first analyze the name of the image and try to identify a registry name (for example, in
my-private-registry/my-image:tag, the address of the registry is my-private-registry) and look
for a corresponding entry in the registries section of the environment description file to look for authentication
credentials. Note that Maestro will also look at each registry’s address FQDN for a match as a fallback.

You can also put your credentials into ${HOME}/.dockercfg in the appropriate format expected by Docker and
docker-py. Maestro, via the docker-py library, will also be looking at the contents of this file for credentials to
registries you are already logged in against.

If credentials are found, Maestro will login to the registry before attempting to pull the image.

Additionally, you can configure a retry policy or image pull errors or a per-registry basis. You can specify a maximum
number of retries, and a list of returned HTTP status codes to retry on. For example, the following configuration will
make two attempts to pull images from the quay.io registry if a 500 is returned.

2.9. Links 17

http://docs.docker.io/en/latest/use/working_with_links_names/

MaestroNG Documentation, Release 0.7.5

registries:
quay.io:
registry: https://quay.io/v1/
email: user@example.com
username: user
password: super-secret
retry:

attempts: 2
when:
- 500

2.11 Passing extra environment variables

You can pass in or override arbitrary environment variables by providing a dictionary of environment variables
key/value pairs. This can be done both at the service level and the container level; the latter taking precedence:

services:
myservice:
image: ...
env:

FOO: bar
instance-1:

ship: host
env:

FOO: overrides bar
FOO_2: bar2

Additionally, Maestro will automatically expand all levels of YAML lists in environment variable values. The follow-
ing are equivalent:

env:
FOO: This is a test
BAR: [This, [is, a], test]

This becomes useful when used in conjunction with YAML references to build more complex environment variable
values:

_globals:
DEFAULT_JVM_OPTS: &jvmopts ['-Xms500m', '-Xmx2g', '-showversion', '-server']

...

env:
JVM_OPTS: [*jvmopts, '-XX:+UseConcMarkSweep']

2.11.1 Examples of Docker images with Maestro orchestration

For examples of Docker images that are suitable for use with Maestro, you can look at the following repositories:

• http://github.com/signalfuse/docker-cassandra A Cassandra image. Nodes within the same cluster are automat-
ically used as Gossip seed peers.

• http://github.com/signalfuse/docker-elasticsearch ElasicSearch with ZooKeeper-based discovery instead of the
multicast-based discovery, to work in cloud environments.

18 Chapter 2. User Guide

http://github.com/signalfuse/docker-cassandra
http://github.com/signalfuse/docker-elasticsearch

MaestroNG Documentation, Release 0.7.5

• http://github.com/signalfuse/docker-zookeeper A ZooKeeper image, automatically creating a cluster with the
other instances in the same environment.

2.12 Maestro guest functions

MaestroNG passes into your container’s environment a lot of information that you might need for your application to
run: port numbers that you have defined in your environment configuration file, addresses and ports of your depen-
dencies, etc. All these environment variables are defined and documented in How Maestro orchestrates and service
auto-configuration.

In order to make groking this environment information easier, MaestroNG provides a Python module of “guest func-
tions” that allow you to write simple container init scripts in Python that act as the glue between this information and
your application’s configuration before starting the application itself.

A common use case, for example, is to get your ZooKeeper connection string from this environment – the rest you
usually find in ZooKeeper itself via service discovery.

2.12.1 Basic usage

To make use of the Maestro guest utils functions, you’ll need to have the Maestro package installed inside your
container. You can easily achieve this by adding the following to your Dockerfile:

ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update \
&& apt-get -y install python python-pip \
&& apt-get clean

RUN pip install maestro-ng

Then, from your Python script, simply do:

from maestro.guestutils import *

And you’re ready to go! Feel free to change the import * to the list of specific functions you actually need in your
script.

2.12.2 Reference

Here’s a summary of the functions available at your disposal that will make your life much easier. All the examples
given here are based on the [Zookeeper+Kafka example environment](examples/zookeeper+kafka.yaml), and assumed
to be executed from within the kafka-2 container.

get_environment_name()

Returns the name of the environment as defined in the description file. Could be useful to namespace information
inside ZooKeeper for example.

>> get_environment_name()
'zk-kafka'

2.12. Maestro guest functions 19

http://github.com/signalfuse/docker-zookeeper

MaestroNG Documentation, Release 0.7.5

get_service_name()

Returns the name of the service the container is a member of.

>> get_service_name()
'kafka'

get_container_name()

Returns the name of the container instance.

>> get_container_name()
'kafka-2'

get_container_host_address()

Returns the IP address or hostname of the host of the container. Useful if your application needs to advertise itself to
some service discovery system with its publicly reachable address. This would be 192.168.10.2 in our example.

>> get_container_host_address()
'192.168.10.2'

get_container_internal_address()

Returns the IP address assigned to the container itself by Docker (its private IP address). This is normally the IP
address Docker assigned to the eth0 interface inside the container and is usually in the 172.18.42.0/24 subnet.

>> get_container_internal_address()
Might be different depending on the number of running containers on
that host.
'172.18.42.1'

get_port(name, default=None)

Returns the exposed internal port number of a given named port for the current container. This is the port number your
application uses _inside_ the container. This is useful to automatically configure the port your application should use
directly from what you have specified in your environment file.

If no default is provided and the port name does not exist, the function will throw a MaestroEnvironmentError excep-
tion.

>> get_port('broker')
9092

>> get_port('unknown', 42)
42

>> get_port('unknown')
MaestroEnvironmentError gets raised

20 Chapter 2. User Guide

MaestroNG Documentation, Release 0.7.5

get_node_list(service, ports=[], minimum=1)

This function is one of the most useful of the set. It takes in a service name and an optional list of port names and
returns the list of IP addresses/hostname of the containers of that service. For each port specified, in order, it will
append :<port number> to each host with the external port number.

The minimum parameter allows for specifying a minimum number of hosts to return, under which the function will
throw a MaestroEnvironmentError exception. This helps enforce the presence of at least N hosts of that service you
depend on in the environment.

Back to our example, you can return the list of ZooKeeper endpoints with their client ports by calling:

>> get_node_list('zookeeper', ports=['client'])
['192.168.10.2:2181', '192.168.10.2:2182', '192.168.10.2:2183']

>> get_node_list('zookeeper', ports=['client', 'peer'])
['192.168.10.2:2181:2888', '192.168.10.2:2182:2889', '192.168.10.2:2183:2890']

Note that Maestro provides information about all your declared dependencies in your environment, but also the infor-
mation about all the instances of your service itself, so you can easily get a node list of your peers:

>> get_node_list(get_service_name(), ports=['broker'])
['192.168.10.2:9092', '192.168.10.2:9093', '192.168.10.2:9094']

get_specific_host(service, container)

Returns the hostname or IP address of a specific container from a given service.

>> get_specific_host('zookeeper', 'zk-node-2')
'192.168.10.2'

get_specific_port(service, container, port, default=None)

Returns the external port number of a specific named port of a given container. This is the externally reachable, routed
port number for that particular target.

>> get_specific_port('zookeeper', 'zk-node-2', 'client')
2182

get_specific_exposed_port(service, container, port, default=None)

Returns the exposed internal port number of a specific named port of a given container. This is rarely needed (but is
used internally by get_port()).

>> get_specific_exposed_port('zookeeper', 'zk-node-2', 'client')
2181

2.12. Maestro guest functions 21

	Introduction
	User Guide
	Usage
	Environment description
	How Maestro orchestrates and service auto-configuration
	Defining dependencies
	Port mapping
	Volume bindings
	Lifecycle checks
	Restart policy
	Links
	Working with image registries
	Passing extra environment variables
	Maestro guest functions

